STATIC FORCE ANALYSIS

TUTORIAL I

1. Determine the input torque on the crank of a Slider Crank Mechanism for the static equilibrium when the applied piston load is N . The lengths of the crank and the connecting rod are 40 mm and 100 mm respectively and the crack has turned through 45° from the inner dead centre. ($55 \mathrm{~N} . \mathrm{m}$)
2. Find the torque required to be applied to link $A B$ of the linkage shown in Fig to maintain the static equilibrium(8.85N.m)

3. Determine the torque required to be applied to link OA of the linkage shown in Fig to maintain the static equilibrium(30.42N.m)

4. For the static equilibrium of the mechanism of the following fig, find the required input torque. The dimensions are as follows
$\mathrm{AB}=150 \mathrm{~mm}, \mathrm{BC}=\mathrm{AD}=500 \mathrm{~mm}, \mathrm{DC}=300 \mathrm{~mm}, \mathrm{CE}=100 \mathrm{~mm}$ and $\mathrm{EF}=450 \mathrm{~mm}(45.5 \mathrm{~N} . \mathrm{m} \mathrm{CW})$

SOLUTIONS

PROBLEM 1

Link 1 = Fixed Link
Link 2 = Crank
Link 3 = Connecting Rod
Link 4 = Slider

Link 4 acted upon by 3 Forces $\mathbf{F}, \mathbf{F}_{14}, \mathbf{F}_{34}$
(Scale $1 \mathrm{~mm}=50 \mathrm{~N}$)
Free Body Diagram of Link 4
Force Polygon

$$
\begin{aligned}
& \text { F=1500 N } \\
& \text { F34 = } 1564 \text { N }
\end{aligned}
$$

Link 3 acted upon by 2 Forces $\mathbf{F}_{23}, \mathbf{F}_{43}$

Link 2 :

$\mathrm{h}=35 \mathrm{~mm}$

From the above relationship

- F34 $=$ F43 $=-$ F23 $=$ F32 $=1564 \mathrm{~N}$

Moment:

$$
\begin{aligned}
& =\text { Force } * \text { Horizontal Distance } \\
& =564 * 35 \\
& =54740 \mathrm{~N} \mathrm{~mm} \\
& =54.740 \mathrm{~N} . \mathrm{m}
\end{aligned}
$$

Therfore the required input Torque is $\mathbf{5 5} \mathbf{N . m}$ (Anti Clockwise)

PROBLEM II

Link 1 = Fixed Link
Link 2 =AB
Link $3=B C$
Link $4=C D$

Link 4 Acted ypon by 3 Forces $\mathbf{F}, \mathbf{F}_{14}, \mathbf{F}_{34}$

Since the direction and magnitude of other two force were unknown Draw free body diagram of Link 3

PROBLEM III

Free body diagram of Link 6

Force Polygon of Slider

From Force polygon
F $56=203 \mathrm{~N}$
$\mathrm{F} 16=35 \mathrm{~N}$

Free body Diagram of Link 5

Free body Diagram of Link 3

Force Polygon of Link 3

From force polygon
F $53=203 \mathrm{~N}$
$F 43=335.7 \mathrm{~N}$
$F 13=179 \mathrm{~N}$
Free Body Diagram of Link 2

$\mathrm{H}=9.09$
Moment:
= Force * Horizontal Distance
$=335.7$ * 9.09
$=3051.51 \mathrm{~N} \mathrm{~cm}$
$=30.51 \mathrm{~N} . \mathrm{m}$

Required Torque $=30.51 \mathrm{~N} \mathbf{m}$

PROBLEM IV

FBD of Link 3

From the above Diagram
$\mathrm{F}=250 \mathrm{~N}$
$\mathrm{F}_{23}=108 \mathrm{~N}$
$\mathrm{F}_{43}=272.40 \mathrm{~N}$

FBD of Link 5

$$
\mathrm{F}_{65}=\mathrm{F}_{45}
$$

From the above diagram
$\mathrm{F}_{54}=363.4 \mathrm{~N}$
$\mathrm{F}_{14}=240.8 \mathrm{~N}$

FBD of Link 6

$\mathrm{H}=12.57 \mathrm{~mm}$

Moment:

$$
\begin{aligned}
& =\text { Force } * \text { Horizontal Distance } \\
& =363.4 * 12.57 \\
& =4567.938 \\
& =45.6 \text { N.m }
\end{aligned}
$$

Required Torque $=\mathbf{4 5 . 6}$ Nm (Clock Wise)

