<u>STATIC FORCE ANALYSIS</u> <u>TUTORIAL I</u>

1. Determine the input torque on the crank of a Slider Crank Mechanism for the static equilibrium when the applied piston load is N. The lengths of the crank and the connecting rod are 40mm and 100mm respectively and the crack has turned through 45° from the inner dead centre.(55 N.m)

2. Find the torque required to be applied to link AB of the linkage shown in Fig to maintain the static equilibrium(8.85N.m)

3. Determine the torque required to be applied to link OA of the linkage shown in Fig to maintain the static equilibrium(30.42N.m)

4. For the static equilibrium of the mechanism of the following fig, find the required input torque. The dimensions are as follows

AB=150mm, BC=AD=500mm, DC=300mm, CE=100mm and EF=450mm (45.5N.m CW)

©B.VARUN DOM Tutorial

SOLUTIONS

PROBLEM 1

Link 1 = Fixed Link Link 2 = Crank Link 3 = Connecting Rod Link 4 = Slider

Link 4 acted upon by 3 Forces **F**, **F**₁₄, **F**₃₄

Free Body Diagram of Link 4

Force Polygon

F=1500 N F34 = 1564 N

Link 3 acted upon by 2 Forces F_{23} , F_{43}

©B.VARUN DOM Tutorial

bvarunsclass.weebly.com

(Scale 1mm = 50N)

h=35mm

From the above relationship -F34 = F43 = -F23 = F32 = 1564 N

Moment:

= Force * Horizontal Distance = 564 * 35 = 54740 N mm = 54.740 N.m

Therfore the required input Torque is 55 N.m (Anti Clockwise)

©B.VARUN DOM Tutorial

<u>PROBLEM II</u>

Link 1 = Fixed Link Link 2 =AB Link 3 = BC Link 4 = CD

Link 4 Acted ypon by 3 Forces F, F₁₄, F₃₄

Since the direction and magnitude of other two force were unknown Draw free body diagram of Link 3

loa of F43 loa of F23

PROBLEM III

Free body diagram of **Link 6**

Force Polygon of Slider

From Force polygon F 56 = 203N F16 = 35N

Free body Diagram of Link 5

Free body Diagram of Link 3

Force Polygon of Link 3

©B.VARUN DOM Tutorial

From force polygon

F 53 = 203N

F 43 = 335.7N

F 13 = 179 N

Free Body Diagram of Link 2

H=9.09

Moment:

= Force * Horizontal Distance = 335.7 * 9.09 = 3051.51 N cm = 30.51 N.m

Required Torque = 30.51N m

©B.VARUN DOM Tutorial

PROBLEM IV

FBD of Link 3

Force Polygon

From the above Diagram F = 250 N $F_{23} = 108 \text{N}$ $F_{43} = 272.40 \text{N}$

FBD of Link 5

 $F_{65} = F_{45}$

FBD of Link 4

Force Polygon

©B.VARUN DOM Tutorial

From the above diagram $F_{54} = 363.4N$ $F_{14} = 240.8N$

FBD of Link 6

F56 F16

H=12.57mm

Moment:

= Force * Horizontal Distance = 363.4 * 12.57 = 4567.938 = 45.6 N.m

Required Torque = 45.6 Nm (Clock Wise)

©B.VARUN DOM Tutorial