SRI RAMAKRISHNA INSTITUTE OF TECHNOLOGY, COIMBATORE-10
(Approved by AICTE, New Delhi - Affiliated to Anna University, Chennai)

Answer Key
 Part A

1) D'Alembert's Principle

It states that the inertia forces and couples and the external forces and torques on a body together give statical Equilibrium

$$
\begin{aligned}
& \mathrm{F}=-\mathrm{m}^{*} \mathrm{f}_{\mathrm{g}} \\
& \mathrm{C}=\mathrm{I}_{\mathrm{g}} * \alpha
\end{aligned}
$$

2) Expressions

Velocity of the slider (v_{p})

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{p}}=\mathrm{r} \omega\left[\sin \theta+\left(\frac{\sin 2 \theta}{2 \mathrm{n}}\right)\right] \\
& \mathrm{a}_{\mathrm{p}}=\mathrm{r} \omega^{2}\left[\cos \theta+\left(\frac{\cos 2 \theta}{\mathrm{n}}\right)\right] \\
& \omega_{\mathrm{pc}}=\frac{\omega \cos \theta}{\sqrt{n^{2}-\sin ^{2} \theta .}}
\end{aligned}
$$

Acceleration of the slider (a_{p})
Angular velocity of the connecting rod ($\omega_{p c}$)
Angular acceleration of the connecting rod $\left(\alpha_{p c}\right) \alpha_{\mathrm{pc}}=\frac{\omega^{2} \sin \theta}{\mathrm{n}}$

3) Difference between static and dynamic force analysis

In static equilibrium the body is either at rest or moving with a constant velocity, its mean that body should have a zero linear acceleration, while in dynamic equilibrium body is rotating at a constant angular velocity or its angular acceleration would be zero.

4) Piston Effort

Force acting on the Piston:

$$
F=F_{p}-F_{b}-F_{f}
$$

Crank Effort

$$
F t=F / \cos \beta^{*}(\sin (\theta+\beta))
$$

Part B

Problem 1

In a slider crank mechanicsm the length of the crank and connecting rod are 150 mm and 600 mm respectively. The crank makes ana angle of 60° with the IDC and revolves at a uniform speed of 300 r.p.m. Find
Velocity and Acceleration of the slider
Angular velocity and Angular acceleration of the connecting rod

Given Data:

Length of the crank (r) $\quad=150 \mathrm{~mm}$
Length of the connecting rod (1) $=600 \mathrm{~mm}$
Angle (θ)
$=60^{\circ}$
Speed (N) $=300 \mathrm{rpm}$

To Find:

Velocity of the slider (v_{p})
Acceleration of the slider (a_{p})
Angular velocity of the connecting rod (ω_{pc})
Angular acceleration of the connecting rod (α_{pc})

Solution:

$$
\begin{aligned}
& \omega=\frac{2 \pi \mathrm{~N}}{60} \\
& \omega=31.4 \mathrm{rad} / \mathrm{s} \\
& \mathrm{n}=\mathrm{l} / \mathrm{r}=600 / 150 \\
& \mathrm{n}=4
\end{aligned}
$$

Velocity of the slider (v_{p})

$$
\begin{aligned}
\mathrm{v}_{\mathrm{p}}= & \mathrm{r} \omega\left[\sin \theta+\left(\frac{\sin 2 \theta}{2 \mathrm{n}}\right)\right] \\
& =\left(0.15^{*} 31.4\right)\left(\sin 60^{\circ}+\left(\sin 120^{\circ} / 2^{*} 4\right)\right) \\
& =4.71^{*} 0.974 \\
& =4.58 \mathbf{~ m} / \mathbf{s e c}
\end{aligned}
$$

Acceleration of the slider (a_{p})

$$
\begin{aligned}
\mathrm{a}_{\mathrm{p}}= & \mathrm{r} \omega^{2}\left[\cos \theta+\left(\frac{\cos 2 \theta}{\mathrm{n}}\right)\right] \\
& =\left(0.15^{*} 31 . \mathbf{4}^{2}\right)\left(\cos 60^{\circ}+\left(\cos 120^{\circ} / 4\right)\right) \\
& \left.=147.89{ }^{*} 0.375\right) \\
& =\mathbf{5 5 . 4 6} \mathbf{~ m} / \mathbf{s e c}^{2}
\end{aligned}
$$

Angular velocity of the connecting rod ($\omega_{p c}$)

$$
\begin{aligned}
\omega_{\mathrm{pc}} & =\frac{\omega \cos \theta}{\sqrt{\mathrm{n}^{2}-} \sin ^{2} \theta .} \\
& =15.7 / 3.91 \\
& =4.02 \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

Angular acceleration of the connecting rod ($\alpha_{p c}$)

$$
\begin{aligned}
& \alpha_{\mathrm{pc}}=\frac{\omega^{2} \sin \theta}{\mathrm{n}} \\
& =853.87 / 4 \\
& =\mathbf{2 1 3 . 4 7} \mathbf{~ r a d} / \mathbf{s}^{2}
\end{aligned}
$$

Problem 2

A Petrol engine has a stroke of 120 mm and connecting rod is 3times of crank length.the crank rotates at 1500 r.p.m clockwise,determine:
a. Velocity and Acceleration of the slider
b. Angular velocity and Angular acceleration of the connecting rod When the piston has travelled $1 / 4^{\text {th }}$ of its stroke from IDC

Given Data:

Stroke Length (L)	$=120 \mathrm{~mm}$
Length of the crank (r)	$=\mathrm{L} / 2=60 \mathrm{~mm}$
Length of the connecting rod (1)	$=3 \mathrm{r}=180 \mathrm{~mm}$
Speed (N)	$=1500 \mathrm{rpm}$

To Find:

Velocity of the slider (v_{p})
Acceleration of the slider (a_{p})
Angular velocity of the connecting rod (ω_{pc})
Angular acceleration of the connecting rod (α_{pc})

Solution:

$$
\begin{aligned}
\omega & =\frac{2 \pi \mathrm{~N}}{60} \\
\omega & =157.08 \mathrm{rad} / \mathrm{s} \\
\mathbf{n} & =\mathbf{3}
\end{aligned}
$$

$$
\begin{aligned}
1 / 4^{\text {th }} \text { of its stroke } & =1 / 4 * 180^{\circ} \\
\theta & =45^{\circ}
\end{aligned}
$$

Velocity of the slider (v_{p})

$$
\begin{aligned}
\mathrm{v}_{\mathrm{p}}= & \mathrm{r} \omega\left[\sin \theta+\left(\frac{\sin 2 \theta}{2 \mathrm{n}}\right)\right] \\
& =\left(157.08^{*} .06\right)\left(\sin 45^{\circ}+\left(\sin 90^{\circ} / 2^{*} 3\right)\right) \\
& =\mathbf{8 . 2 3 5} \mathbf{~ m} / \mathbf{s e c}
\end{aligned}
$$

Acceleration of the slider (a_{p})

$$
\begin{aligned}
\mathrm{a}_{\mathrm{p}}= & \mathrm{r} \omega^{2} \\
& {\left[\cos \theta+\left(\frac{\cos 2 \theta}{\mathrm{n}}\right)\right] } \\
& =\left(.06^{*} 157.08^{2}\right)\left(\cos 45^{\circ}+\left(\cos 90^{\circ} / 3\right)\right) \\
& =\mathbf{1 0 4 6 . 8 3} \mathbf{~ m} / \mathbf{s e c}^{2}
\end{aligned}
$$

Angular velocity of the connecting rod ($\omega_{p c}$)

$$
\begin{aligned}
\omega_{\mathrm{pc}} & =\frac{\omega \cos \theta}{\sqrt{\mathrm{n}^{2}-} \sin ^{2} \theta .} \\
& =\mathbf{3 8 . 1} \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

Angular acceleration of the connecting rod ($\alpha_{p c}$)

$$
\begin{aligned}
& \alpha_{\mathrm{pc}}=\frac{\omega^{2} \sin \theta}{\mathrm{n}} \\
& =\mathbf{5 8 1 5 . 7 5} \mathbf{~ r a d} / \mathrm{s}^{2}
\end{aligned}
$$

Problem 3

A horizontal steam engine running at 240 r.p.m has a bore of 200 mm and stroke of 360 mm . The piston rod is 20 mm in diameter and connecting rod length is 900 mm . the mass of the reciprocating parts is 7 Kg and the frictional resistance is equivalent to a force of 500 N . Determine the following when the crank is at 120° from the IDC, the mean pressure being $5000 \mathrm{~N} / \mathrm{m}^{2}$ on the cover side and $100 \mathrm{~N} / \mathrm{m}^{2}$ on the crank side.

Thrust on the connecting rod, Thrust on the cylinder walls
Loads on the bearings Turning moment on the crankshaft

Given Data:

Speed (N)
Bore diameter (d)
Stroke Length (L)
Piston rod diameter (d)
Length of the connecting rod (l)
Mass of the reciprocating Parts
Frictional Resistance
Angle (θ)
Pressure on cover side (P1)
Pressure on crank side (P2)
$=240 \mathrm{rpm}$
$=200 \mathrm{~mm} \quad=0.2 \mathrm{~m}$
$=360 \mathrm{~mm} \quad=0.36 \mathrm{~m}$
$=20 \mathrm{~mm} \quad=0.02 \mathrm{~m}$
$=900 \mathrm{~mm} \quad=0.9 \mathrm{~m}$
$=7 \mathrm{~kg}$
$=500 \mathrm{~N}$
$=120^{\circ}$
$=5000 \mathrm{~N} / \mathrm{m}^{2}$
$=100 \mathrm{~N} / \mathrm{m}^{2}$

To Find:

Thrust on the connecting rod $\left(\mathrm{F}_{\mathrm{c}}\right)$,
Thrust on the cylinder walls (F_{n})
Loads on the bearings (F_{r})
Turning moment on the crankshaft (T)

Solution:

$$
\omega=\frac{2 \pi N}{60}
$$

$$
\begin{gathered}
=25.13 \mathrm{rad} / \mathrm{s} \\
\mathrm{r}=\mathrm{L} / 2 \\
=.18 \mathrm{~m} \\
\mathrm{n}=\mathrm{l} / \mathrm{r} \\
=.9 / .18 \\
=5 \\
\sin \beta=\frac{\sin \theta}{n}=0.173 \\
\beta=9.96^{\circ}
\end{gathered}
$$

Force acting on the Piston:

$$
F=F_{p}-F_{b}-F_{f}
$$

Force due to Gas Pressure (F_{p})

$$
\begin{aligned}
& =\mathrm{P}_{1} \mathrm{~A}_{1}-\mathrm{P}_{2} \mathrm{~A}_{2} \\
& =\left(5000^{*}(\pi / 4)^{*}\left(0.2^{2}\right)\right)-\left(100^{*}(\pi / 4)^{*}\left(0.2^{2}-0.02^{2}\right)\right) \\
& =157.08-3.11
\end{aligned}
$$

$$
=153.97 \mathrm{~N}
$$

Inertia Force (F_{b})
$=m r \omega^{2}\left[\cos \theta+\left(\frac{\cos 2 \theta}{\mathrm{n}}\right)\right]$
$=7^{*} 0.18^{*} 25.13^{2}\left(\cos 120^{\circ}+\left(\cos 120^{\circ} / 5\right)\right)$
$=795.71$ * (-0.6)
$=-477.43 \mathrm{~N}$
Frictional Resistance

$$
=500 \mathrm{~N}
$$

$\mathrm{F} \quad=\mathrm{F}_{\mathrm{p}}-\mathrm{F}_{\mathrm{b}}-\mathrm{F}_{\mathrm{f}}$
$=153.97+477.43-500$
$=131.4 \mathrm{~N}$

Thrust on the connecting rod $\left(F_{c}\right)$,

$$
\begin{aligned}
& \boldsymbol{F}_{\mathrm{c}}=\mathrm{F} / \cos \beta \\
& =131.4 / \cos 9.96 \\
& =131.4 / 0.98 \\
& =\mathbf{1 3 4 . 0 8} \mathbf{N}
\end{aligned}
$$

Thrust on the cylinder walls (F_{n})

$$
\begin{aligned}
& F c=F \tan \beta \\
& =131.4^{*} \tan 9.96^{\circ} \\
& =131.4 / 0.18 \\
& =730 \mathrm{~N}
\end{aligned}
$$

Loads on the bearings (F_{r})

$$
\begin{aligned}
& F r=(F / \cos \beta)(\cos (\theta+\beta)) \\
& =134.4 *(-0.64) \\
& =\mathbf{- 8 4 . 1} \mathbf{~ N}
\end{aligned}
$$

Turning moment on the crankshaft (T)

$$
\begin{aligned}
F r & =(F / \cos \beta)(\sin (\theta+\beta)) \mathrm{r} \\
& =(134.4)(0.77)(0.18) \\
& =\mathbf{1 8 . 6 3} \mathbf{~ N m}
\end{aligned}
$$

Problem 4

The crank and connecting rod of a vertical petrol engine, running at 1800 r.p.m are 60 mm and 270 mm respectively. The diameter of the piston is 100 mm and the mass of the reciprocating parts is 1.2 kg. During the expansion stroke when the crank has turned 20° from the TDC, the gas pressure is $650 \mathrm{kN} / \mathrm{m}^{2}$. Determine the

- Net force on the piston
- Net load on the gudgeon pin
- Thrust on the cylinder walls
- Speed at which the gudgeon pin load is reversed in direction

Given Data:

Speed (N)	$=1800 \mathrm{rpm}$	
Crank radius (r)	$=60 \mathrm{~mm}$	$=0.06 \mathrm{~m}$
Connecting rod Length (l)	$=270 \mathrm{~mm}$	$=0.27 \mathrm{~m}$
Diameter of Piston (d)	$=100 \mathrm{~mm}$	$=0.1 \mathrm{~m}$
Mass of reciprocating parts (m)	$=1.2 \mathrm{~kg}$	
Angle (θ)	$=20^{\circ}$	
Gas Pressure	$=650 \mathrm{kN} / \mathrm{m}^{2}$	

To Find:

- Net force on the piston(F)
- Net load on the gudgeon pin $\left(\mathrm{F}_{\mathrm{c}}\right)$
- Thrust on the cylinder walls (F_{n})
- Speed at which the gudgeon pin load is reversed in direction (N)

Solution:

$$
\begin{gathered}
\mathrm{n}=\mathrm{l} / \mathrm{r} \\
\mathrm{n}=0.27 / 0.06=4.5 \\
\omega=\frac{2 \pi \mathrm{~N}}{60} \\
=188.5 \mathrm{rad} / \mathrm{s} \\
\sin \beta=\frac{\sin \theta}{n} \\
\beta=4.36^{\circ}
\end{gathered}
$$

Force due to gas pressure: F_{p}

$$
\begin{aligned}
\text { Fp } & =\text { Area } * \text { Pressure } \\
& =(\pi / 4)\left(\mathrm{d}^{2}\right) * \mathrm{P} \\
& =(\pi / 4)\left(0.1^{2}\right) * 650^{*} 10^{3} \\
& =5105 \mathrm{~N}
\end{aligned}
$$

Inertia Force (Fb):

$$
\begin{aligned}
& \operatorname{mr} \omega^{2}\left[\cos \theta+\left(\frac{\cos 2 \theta}{\mathrm{n}}\right)\right] \\
&= 1.2^{*} 0.06^{*}(188.5)^{2}\left(\cos 20^{\circ}+\left(\cos 40^{\circ} / 4.5\right)\right) \\
&=\mathbf{2 8 4 0} \mathbf{~ N}
\end{aligned}
$$

Net force on the piston
(F)
$\mathrm{F}=\mathrm{F}_{\mathrm{p}}-\mathrm{F}_{\mathrm{b}}+\mathrm{mg}$
$\mathrm{F}=5105-2840+1.2^{*} 9.81$
$=2276.8 \mathrm{~N}$
Net load on the gudgeon pin (F_{c})

$$
\begin{aligned}
& F c=F / \operatorname{Cos} \beta \\
& =2276.8 / \cos 4.6^{\circ} \\
& =2283.4 \mathbf{N}
\end{aligned}
$$

Thrust on the cylinder walls (F_{n})

$$
\begin{aligned}
& F c=F \tan \beta \\
& =2276.8^{*} \tan 4.6^{\circ} \\
& =173.5 \mathrm{~N}
\end{aligned}
$$

Speed at which the gudgeon pin load is reversed in direction (N)

$$
\begin{aligned}
& \mathrm{F}=\mathrm{F}_{\mathrm{p}}-\mathrm{F}_{\mathrm{b}}+\mathrm{mg}=0 \\
& =5105-1.2^{*} 0.06 * \omega^{2}\left[\cos 20^{\circ}+\left(\frac{\cos 40^{\circ}}{4.5}\right)\right]+1.2^{*} 9.81
\end{aligned}
$$

